All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Modeling of discrete questionnaire data with dimension reduction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00557126" target="_blank" >RIV/67985556:_____/22:00557126 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21260/22:00357903

  • Result on the web

    <a href="http://nnw.cz/doi/2022/NNW.2022.32.002.pdf" target="_blank" >http://nnw.cz/doi/2022/NNW.2022.32.002.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14311/NNW.2022.32.002" target="_blank" >10.14311/NNW.2022.32.002</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Modeling of discrete questionnaire data with dimension reduction

  • Original language description

    The paper deals with the task of modeling discrete questionnaire data with a reduced dimension of the model. The discrete model dimension is reduced using the construction of local models based on independent binomial mixtures estimated with the help of recursive Bayesian algorithms in the combination with the naive Bayes technique. The main contribution of the paper is a three-phase algorithm of the discrete model dimension reduction, which allows to model high-dimensional questionnaire data with high number of explanatory variables and their possible realizations. The proposed general solution is applied to the traffic accident questionnaire analysis, where it takes the form of the classification of the accident circumstances and prediction of the traffic accident severity using the currently measured discrete data. Results of testing the obtained model on real data and comparison with theoretical counterparts are demonstrated.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/8A19009" target="_blank" >8A19009: Arrowhead Tools for Engineering of Digitalisation Solutions</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Neural Network World

  • ISSN

    1210-0552

  • e-ISSN

  • Volume of the periodical

    32

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    27

  • Pages from-to

    15-41

  • UT code for WoS article

    000795530700002

  • EID of the result in the Scopus database

    2-s2.0-85130701278