A simple proof of exponential decay of subcritical contact processes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00462694" target="_blank" >RIV/67985556:_____/18:00462694 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00440-016-0741-1" target="_blank" >http://dx.doi.org/10.1007/s00440-016-0741-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00440-016-0741-1" target="_blank" >10.1007/s00440-016-0741-1</a>
Alternative languages
Result language
angličtina
Original language name
A simple proof of exponential decay of subcritical contact processes
Original language description
This paper gives a new, simple proof of the known fact that for contact processes on general lattices, in the subcritical regime the expected number of infected sites decays exponentially fast as time tends to infinity. The proof also yields an explicit bound on the survival probability below the critical recovery rate, which shows that the critical exponent associated with this function is bounded from below by its mean-field value. The main idea of the proof is that if the expected number of infected sites decays slower than exponentially, then this implies the existence of a harmonic function that can be used to show that the process survives for any lower value of the recovery rate.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-15238S" target="_blank" >GA16-15238S: Collective behavior of large stochastic systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Probability Theory and Related Fields
ISSN
0178-8051
e-ISSN
—
Volume of the periodical
170
Issue of the periodical within the volume
1-2
Country of publishing house
DE - GERMANY
Number of pages
9
Pages from-to
1-9
UT code for WoS article
000422970700001
EID of the result in the Scopus database
2-s2.0-84987597576