Planar Choquard equations with critical exponential reaction and Neumann boundary condition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU154955" target="_blank" >RIV/00216305:26220/24:PU154955 - isvavai.cz</a>
Result on the web
<a href="https://onlinelibrary.wiley.com/doi/full/10.1002/mana.202400095" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/mana.202400095</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.202400095" target="_blank" >10.1002/mana.202400095</a>
Alternative languages
Result language
angličtina
Original language name
Planar Choquard equations with critical exponential reaction and Neumann boundary condition
Original language description
We study the existence of positive weak solutions for the following problem: (Formula presented.) where (Formula presented.) is a bounded domain in (Formula presented.) with smooth boundary, (Formula presented.) is a bounded measurable function on (Formula presented.), (Formula presented.) is nonnegative real number, (Formula presented.) is the unit outer normal to (Formula presented.), (Formula presented.), and (Formula presented.). The functions (Formula presented.) and (Formula presented.) have critical exponential growth, while (Formula presented.) and (Formula presented.) are their primitives. The proofs combine the constrained minimization method with energy methods and topological tools.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
1522-2616
Volume of the periodical
297
Issue of the periodical within the volume
10
Country of publishing house
DE - GERMANY
Number of pages
23
Pages from-to
3847-3869
UT code for WoS article
001287325200001
EID of the result in the Scopus database
2-s2.0-85200971727