On the motion of a small rigid body in a viscous compressible fluid
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00573343" target="_blank" >RIV/67985840:_____/23:00573343 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1080/03605302.2023.2202733" target="_blank" >https://doi.org/10.1080/03605302.2023.2202733</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/03605302.2023.2202733" target="_blank" >10.1080/03605302.2023.2202733</a>
Alternative languages
Result language
angličtina
Original language name
On the motion of a small rigid body in a viscous compressible fluid
Original language description
We consider the motion of a small rigid object immersed in a viscous compressible fluid in the 3-dimensional Eucleidean space. Assuming the object is a ball of a small radius ε we show that the behavior of the fluid is not influenced by the object in the asymptotic limit (Formula presented.) The result holds for the isentropic pressure law (Formula presented.) for any (Formula presented.) under mild assumptions concerning the rigid body density. In particular, the latter may be bounded as soon as (Formula presented.) The proof uses a new method of construction of the test functions in the weak formulation of the problem, and, in particular, a new form of the so-called Bogovskii operator.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA21-02411S" target="_blank" >GA21-02411S: Solving ill posed problems in the dynamics of compressible fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Partial Differential Equations
ISSN
0360-5302
e-ISSN
1532-4133
Volume of the periodical
48
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
25
Pages from-to
794-818
UT code for WoS article
000985459200001
EID of the result in the Scopus database
2-s2.0-85159031986