All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the motion of a small rigid body in a viscous compressible fluid

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00573343" target="_blank" >RIV/67985840:_____/23:00573343 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1080/03605302.2023.2202733" target="_blank" >https://doi.org/10.1080/03605302.2023.2202733</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/03605302.2023.2202733" target="_blank" >10.1080/03605302.2023.2202733</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the motion of a small rigid body in a viscous compressible fluid

  • Original language description

    We consider the motion of a small rigid object immersed in a viscous compressible fluid in the 3-dimensional Eucleidean space. Assuming the object is a ball of a small radius ε we show that the behavior of the fluid is not influenced by the object in the asymptotic limit (Formula presented.) The result holds for the isentropic pressure law (Formula presented.) for any (Formula presented.) under mild assumptions concerning the rigid body density. In particular, the latter may be bounded as soon as (Formula presented.) The proof uses a new method of construction of the test functions in the weak formulation of the problem, and, in particular, a new form of the so-called Bogovskii operator.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA21-02411S" target="_blank" >GA21-02411S: Solving ill posed problems in the dynamics of compressible fluids</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Communications in Partial Differential Equations

  • ISSN

    0360-5302

  • e-ISSN

    1532-4133

  • Volume of the periodical

    48

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    25

  • Pages from-to

    794-818

  • UT code for WoS article

    000985459200001

  • EID of the result in the Scopus database

    2-s2.0-85159031986