Bounds on functionality and symmetric difference - two intriguing graph parameters
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00579481" target="_blank" >RIV/67985840:_____/23:00579481 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21240/23:00369027 RIV/00216208:11320/23:10474496
Result on the web
<a href="https://doi.org/10.1007/978-3-031-43380-1_22" target="_blank" >https://doi.org/10.1007/978-3-031-43380-1_22</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-43380-1_22" target="_blank" >10.1007/978-3-031-43380-1_22</a>
Alternative languages
Result language
angličtina
Original language name
Bounds on functionality and symmetric difference - two intriguing graph parameters
Original language description
[Alecu et al.: Graph functionality, JCTB2021] define functionality, a graph parameter that generalizes graph degeneracy. They research the relation of functionality to many other graph parameters (tree-width, clique-width, VC-dimension, etc.). Extending their research, we prove a logarithmic lower bound for functionality of random graph G(n, p) for large range of p. Previously known graphs have functionality logarithmic in number of vertices. We show that for every graph G on n vertices we have fun (Formula presented) and we give a nearly matching (Formula presented) -lower bound provided by projective planes. Further, we study a related graph parameter symmetric difference, the minimum of (Formula presented) over all pairs of vertices of the “worst possible” induced subgraph. It was observed by Alecu et al. that (Formula presented) for every graph G. We compare fun and sd for the class INT of interval graphs and CA of circular-arc graphs. We let INTn denote the n-vertex interval graphs, similarly for CAn. Alecu et al. ask, whether fun (INT) is bounded. Dallard et al. answer this positively in a recent preprint. On the other hand, we show that (Formula presented). For the related class (Formula presented) we show that (Formula presented). We propose a follow-up question: is (Formula presented) bounded?
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Graph-Theoretic Concepts in Computer Science
ISBN
978-3-031-43379-5
ISSN
0302-9743
e-ISSN
—
Number of pages
14
Pages from-to
305-318
Publisher name
Springer
Place of publication
Cham
Event location
Fribourg
Event date
Jun 28, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001162209000022