The complexity of proving that a graph is Ramsey
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00474390" target="_blank" >RIV/67985840:_____/17:00474390 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00493-015-3193-9" target="_blank" >http://dx.doi.org/10.1007/s00493-015-3193-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00493-015-3193-9" target="_blank" >10.1007/s00493-015-3193-9</a>
Alternative languages
Result language
angličtina
Original language name
The complexity of proving that a graph is Ramsey
Original language description
We say that a graph with n vertices is c-Ramsey if it does not contain either a clique or an independent set of size c log n. We define a CNF formula which expresses this property for a graph G. We show a superpolynomial lower bound on the length of resolution proofs that G is c-Ramsey, for every graph G. Our proof makes use of the fact that every c-Ramsey graph must contain a large subgraph with some properties typical for random graphs.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Combinatorica
ISSN
0209-9683
e-ISSN
—
Volume of the periodical
37
Issue of the periodical within the volume
2
Country of publishing house
HU - HUNGARY
Number of pages
16
Pages from-to
253-268
UT code for WoS article
000399890000008
EID of the result in the Scopus database
2-s2.0-85018519537