The complexity of proving that a graph is Ramsey
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00395529" target="_blank" >RIV/67985840:_____/13:00395529 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-39206-1_58" target="_blank" >http://dx.doi.org/10.1007/978-3-642-39206-1_58</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-39206-1_58" target="_blank" >10.1007/978-3-642-39206-1_58</a>
Alternative languages
Result language
angličtina
Original language name
The complexity of proving that a graph is Ramsey
Original language description
We say that a graph with n vertices is c-Ramsey if it does not contain either a clique or an independent set of size c logn. We define a CNF formula which expresses this property for a graph G. We show a superpolynomial lower bound on the length of resolution proofs that G is c-Ramsey, for every graph G. Our proof makes use of the fact that every Ramsey graph must contain a large subgraph with some of the statistical properties of the random graph.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Automata, Languages, and Programming. Part I
ISBN
978-3-642-39205-4
ISSN
—
e-ISSN
—
Number of pages
12
Pages from-to
684-695
Publisher name
Springer
Place of publication
Berlin
Event location
Riga
Event date
Jul 8, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—