Neighborhood semantics for modal many-valued logics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00480886" target="_blank" >RIV/67985556:_____/18:00480886 - isvavai.cz</a>
Alternative codes found
RIV/67985807:_____/18:00480886
Result on the web
<a href="http://dx.doi.org/10.1016/j.fss.2017.10.009" target="_blank" >http://dx.doi.org/10.1016/j.fss.2017.10.009</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2017.10.009" target="_blank" >10.1016/j.fss.2017.10.009</a>
Alternative languages
Result language
angličtina
Original language name
Neighborhood semantics for modal many-valued logics
Original language description
The majority of works on modal many-valued logics consider Kripke-style possible worlds frames as the principal semantics despite their well-known axiomatizability issues when considering non-Boolean accessibility relations. The present work explores a more general semantical picture, namely a many-valued version of the classical neighborhood semantics. We present it in two levels of generality. First, we work with modal languages containing only the two usual unary modalities, define neighborhood frames over algebras of the logic FLew with operators, and show their relation with the usual Kripke semantics (this is actually the highest level of generality where one can give a straightforward definition of the Kripke-style semantics). Second, we define generalized neighborhood frames for arbitrary modal languages over a given class of algebras for an arbitrary protoalgebraic logic and, assuming certain additional conditions, axiomatize the logic of all such frames (which generalizes the completeness theorem of the classical modal logic E with respect to classical neighborhood frames).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF15-34650L" target="_blank" >GF15-34650L: Modeling vague quantifiers in mathematical fuzzy logic</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
345
Issue of the periodical within the volume
15 August
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
14
Pages from-to
99-112
UT code for WoS article
000436569200006
EID of the result in the Scopus database
2-s2.0-85031759745