Axiomatization of Crisp Gödel Modal Logic
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00525276" target="_blank" >RIV/67985807:_____/21:00525276 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s11225-020-09910-5" target="_blank" >http://dx.doi.org/10.1007/s11225-020-09910-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11225-020-09910-5" target="_blank" >10.1007/s11225-020-09910-5</a>
Alternative languages
Result language
angličtina
Original language name
Axiomatization of Crisp Gödel Modal Logic
Original language description
In this paper we consider the modal logic with both [] and <> arising from Kripke models with a crisp accessibility and whose propositions are valued over the standard Gödel algebra [0,1]G. We provide an axiomatic system extending the one from Caicedo and Rodriguez (J Logic Comput 25(1):37–55, 2015) for models with a valued accessibility with Dunn axiom from positive modal logics, and show it is strongly complete with respect to the intended semantics. The axiomatizations of the most usual frame restrictions are given too. We also prove that in the studied logic it is not possible to get ◊ as an abbreviation of [], nor vice-versa, showing that indeed the axiomatic system we present does not coincide with any of the mono-modal fragments previously axiomatized in the literature.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EF17_050%2F0008361" target="_blank" >EF17_050/0008361: Enhancing human resources for research in theoretical computer science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Studia Logica
ISSN
0039-3215
e-ISSN
1572-8730
Volume of the periodical
109
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
29
Pages from-to
367-395
UT code for WoS article
000538968900001
EID of the result in the Scopus database
2-s2.0-85086151573