All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Axiomatization of Crisp Gödel Modal Logic

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00525276" target="_blank" >RIV/67985807:_____/21:00525276 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s11225-020-09910-5" target="_blank" >http://dx.doi.org/10.1007/s11225-020-09910-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11225-020-09910-5" target="_blank" >10.1007/s11225-020-09910-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Axiomatization of Crisp Gödel Modal Logic

  • Original language description

    In this paper we consider the modal logic with both [] and <> arising from Kripke models with a crisp accessibility and whose propositions are valued over the standard Gödel algebra [0,1]G. We provide an axiomatic system extending the one from Caicedo and Rodriguez (J Logic Comput 25(1):37–55, 2015) for models with a valued accessibility with Dunn axiom from positive modal logics, and show it is strongly complete with respect to the intended semantics. The axiomatizations of the most usual frame restrictions are given too. We also prove that in the studied logic it is not possible to get ◊ as an abbreviation of [], nor vice-versa, showing that indeed the axiomatic system we present does not coincide with any of the mono-modal fragments previously axiomatized in the literature.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/EF17_050%2F0008361" target="_blank" >EF17_050/0008361: Enhancing human resources for research in theoretical computer science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Studia Logica

  • ISSN

    0039-3215

  • e-ISSN

    1572-8730

  • Volume of the periodical

    109

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    29

  • Pages from-to

    367-395

  • UT code for WoS article

    000538968900001

  • EID of the result in the Scopus database

    2-s2.0-85086151573