All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Extension Properties and Subdirect Representation in Abstract Algebraic Logic

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00484922" target="_blank" >RIV/67985556:_____/18:00484922 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s11225-017-9771-7" target="_blank" >http://dx.doi.org/10.1007/s11225-017-9771-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11225-017-9771-7" target="_blank" >10.1007/s11225-017-9771-7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Extension Properties and Subdirect Representation in Abstract Algebraic Logic

  • Original language description

    This paper continues the investigation, started in Lávička and Noguera (Stud Log 105(3): 521–551, 2017), of infinitary propositional logics from the perspective of their algebraic completeness and filter extension properties in abstract algebraic logic. If follows from the Lindenbaum Lemma used in standard proofs of algebraic completeness that, in every finitary logic, (completely) intersection-prime theories form a basis of the closure system of all theories. In this article we consider the open problem of whether these properties can be transferred to lattices of filters over arbitrary algebras of the logic. We show that in general the answer is negative, obtaining a richer hierarchy of pairwise different classes of infinitary logics that we separate with natural examples. As by-products we obtain a characterization of subdirect representation for arbitrary logics, develop a fruitful new notion of natural expansion, and contribute to the understanding of semilinear logics.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-04630S" target="_blank" >GA17-04630S: Predicate graded logics and their applications to computer science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Studia Logica

  • ISSN

    0039-3215

  • e-ISSN

  • Volume of the periodical

    106

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    31

  • Pages from-to

    1065-1095

  • UT code for WoS article

    000450596100001

  • EID of the result in the Scopus database

    2-s2.0-85037378516