On Strong Standard Completeness in Some MTL-Delta Expansions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00466763" target="_blank" >RIV/67985807:_____/17:00466763 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00500-016-2338-0" target="_blank" >http://dx.doi.org/10.1007/s00500-016-2338-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00500-016-2338-0" target="_blank" >10.1007/s00500-016-2338-0</a>
Alternative languages
Result language
angličtina
Original language name
On Strong Standard Completeness in Some MTL-Delta Expansions
Original language description
In this paper, inspired by the previous work of Franco Montagna on infinitary axiomatizations for standard BL-algebras, we focus on a uniform approach to the following problem: given a left-continuous t-norm *, find an axiomatic system (possibly with infinitary rules) which is strongly complete with respect to the standard algebra [0,1]*. This system will be an expansion of Monoidal t-norm-based logic. First, we introduce an infinitary axiomatic system L, expanding the language with Delta and countably many truth constants, and with only one infinitary inference rule, that is inspired in Takeuti–Titani density rule. Then we show that L is indeed strongly complete with respect to the standard algebra [0,1]*. Moreover, the approach is generalized to axiomatize expansions of these logics with additional operators whose intended semantics over [0,1] satisfy some regularity conditions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GF15-34650L" target="_blank" >GF15-34650L: Modeling vague quantifiers in mathematical fuzzy logic</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Soft Computing
ISSN
1432-7643
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
23
Pages from-to
125-147
UT code for WoS article
000392065600012
EID of the result in the Scopus database
2-s2.0-84989837588