Back-and-forth systems for fuzzy first-order models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00486421" target="_blank" >RIV/67985556:_____/18:00486421 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.fss.2018.01.016" target="_blank" >http://dx.doi.org/10.1016/j.fss.2018.01.016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2018.01.016" target="_blank" >10.1016/j.fss.2018.01.016</a>
Alternative languages
Result language
angličtina
Original language name
Back-and-forth systems for fuzzy first-order models
Original language description
This paper continues the study of model theory for fuzzy logics by addressing the fundamental issue of classifying models according to their first-order theory. Three different definitions of elementary equivalence for fuzzy first-order models are introduced and separated by suitable counterexamples. We propose several back-and-forth conditions, based both on classical two-sorted structures and on non-classical structures, that are useful to obtain elementary equivalence in particular cases as we illustrate with several examples.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF15-34650L" target="_blank" >GF15-34650L: Modeling vague quantifiers in mathematical fuzzy logic</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
345
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
16
Pages from-to
83-98
UT code for WoS article
000436569200005
EID of the result in the Scopus database
2-s2.0-85044581850