Löwenheim-Skolem theorems for non-classical first-order algebraizable logics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00469168" target="_blank" >RIV/67985556:_____/16:00469168 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1093/jigpal/jzw009" target="_blank" >http://dx.doi.org/10.1093/jigpal/jzw009</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/jigpal/jzw009" target="_blank" >10.1093/jigpal/jzw009</a>
Alternative languages
Result language
angličtina
Original language name
Löwenheim-Skolem theorems for non-classical first-order algebraizable logics
Original language description
This paper is a contribution to the model theory of non-classical first-order predicate logics. In a wide framework of first-order systems based on algebraizable logics, we study several notions of homomorphisms between models and find suitable definitions of elementary homomorphism, elementary substructure and elementary equivalence. Then we obtain (downward and upward) Löwenheim-Skolem theorems for these non-classical logics, by direct proofs and by describing their models as classical 2-sorted models.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-14654S" target="_blank" >GA13-14654S: An Order-Based Approach to Non-Classical Propositional and Predicate Logics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Logic Journal of the IGPL
ISSN
1367-0751
e-ISSN
—
Volume of the periodical
24
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
25
Pages from-to
321-345
UT code for WoS article
000377662400006
EID of the result in the Scopus database
2-s2.0-84974695790