All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Rotationally Invariant Bark Recognition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00492498" target="_blank" >RIV/67985556:_____/18:00492498 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-97785-0_3" target="_blank" >http://dx.doi.org/10.1007/978-3-319-97785-0_3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-97785-0_3" target="_blank" >10.1007/978-3-319-97785-0_3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Rotationally Invariant Bark Recognition

  • Original language description

    An efficient bark recognition method based on a novel wide-sense Markov spiral model textural representation is presented. Unlike the alternative bark recognition methods based on various gray-scale discriminative textural descriptions, we benefit from fully descriptive color, rotationally invariant bark texture representation. The proposed method significantly outperforms the state-of-the-art bark recognition approaches in terms of the classification accuracy.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Structural, Syntactic, and Statistical Pattern Recognition : Joint IAPR International Workshop, S+SSPR 2018

  • ISBN

    978-3-319-97784-3

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    22-31

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    Cham

  • Event location

    Beijing

  • Event date

    Aug 17, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article