Coniferous Trees Needles-Based Taxonomy Classification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00520496" target="_blank" >RIV/67985556:_____/19:00520496 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/IVCNZ48456.2019.8961023" target="_blank" >http://dx.doi.org/10.1109/IVCNZ48456.2019.8961023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IVCNZ48456.2019.8961023" target="_blank" >10.1109/IVCNZ48456.2019.8961023</a>
Alternative languages
Result language
angličtina
Original language name
Coniferous Trees Needles-Based Taxonomy Classification
Original language description
This paper introduces multispectral rotationally invariant textural features of the Markovian type applied for the effective coniferous tree needles categorization. Presented texture features are inferred from the descriptive multispectral spiral wide-sense Markov model. Unlike the alternative texture recognition methods based on various gray-scale discriminative textural descriptions, we take advantage of the needles texture representation, which is fully descriptive multispectral and rotationally invariant. The presented method achieves high accuracy for needles recognition. Thus it can be used for reliable coniferous tree taxon classification. Our classifier is tested on the open source needles database Aff, which contains 716 high-resolution images from 11 diverse coniferous tree species.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
<a href="/en/project/GA19-12340S" target="_blank" >GA19-12340S: Surface material recognition under variable optical observation conditions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
International Conference on Image and Vision Computing New Zealand 2019 (IVCNZ 2019)
ISBN
978-1-7281-4188-6
ISSN
2151-2191
e-ISSN
—
Number of pages
6
Pages from-to
1-6
Publisher name
IEEE
Place of publication
Piscataway
Event location
Dunedin
Event date
Dec 2, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—