Representations of Bayesian Networks by Low-Rank Models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00493355" target="_blank" >RIV/67985556:_____/18:00493355 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Representations of Bayesian Networks by Low-Rank Models
Original language description
Conditional probability tables (CPTs) of discrete valued random variables may achieve high dimensions and Bayesian networks defined as the product of these CPTs may become intractable by conventional methods of BN inference because of their dimensionality. In many cases, however, these probability tables constitute tensors of relatively low rank. Such tensors can be written in the so-called Kruskal form as a sum of rank-one components. Such representation would be equivalent to adding one artificial parent to all random variables and deleting all edges between the variables. The most difficult task is to find such a representation given a set of marginals or CPTs of the random variables under consideration. In the former case, it is a problem of joint canonical polyadic (CP) decomposition of a set of tensors. The latter fitting problem can be solved in a similar manner. We apply a recently proposed alternating direction method of multipliers (ADMM), which assures that the model has a probabilistic interpretation, i.e., that all elements of all factor matrices are nonnegative. We perform experiments with several well-known Bayesian networks.nn
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GA17-00902S" target="_blank" >GA17-00902S: Advanded Joint Blind Source Separation Methods</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of Machine Learning Research
ISBN
—
ISSN
1938-7228
e-ISSN
—
Number of pages
12
Pages from-to
463-472
Publisher name
UTIA
Place of publication
Praha
Event location
Praha
Event date
Sep 11, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—