Risk-sensitive and Mean Variance Optimality in Continuous-time Markov Decision Chains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00493556" target="_blank" >RIV/67985556:_____/18:00493556 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Risk-sensitive and Mean Variance Optimality in Continuous-time Markov Decision Chains
Original language description
In this note we consider continuous-time Markov decision processes with finite state and actions spaces where the stream of rewards generated by the Markov processes is evaluated by an exponential utility function with a given risk sensitivitycoefficient (so-called risk-sensitive models). If the risk sensitivity coefficient equals zero (risk-neutral case) we arrive at a standard Markov decision process. Then we can easily obtain necessary and sufficient mean reward optimality conditions and the variability can be evaluated by the mean variance of total expected rewards. For the risk-sensitive case, i.e. if the risk-sensitivity coefficient is non-zero, for a given value of the risk-sensitivity coefficient we establish necessary and sufficient optimality conditions for maximal (or minimal) growth rate of expectation of the exponential utility function, along with mean value of the corresponding certainty equivalent. Recall that in this case along with the total reward also its higher moments are taken into account.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
50201 - Economic Theory
Result continuities
Project
<a href="/en/project/GA18-02739S" target="_blank" >GA18-02739S: Stochastic Optimization in Economic Processes</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
36th International Conference Mathematical Methods in Economics
ISBN
978-80-7378-371-6
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
497-512
Publisher name
MatfyzPress
Place of publication
Praha
Event location
Jindřichův Hradec
Event date
Sep 12, 2018
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—