Risk-Sensitivity and Average Optimality in Markov and Semi-Markov Reward Processes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00536246" target="_blank" >RIV/67985556:_____/20:00536246 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Risk-Sensitivity and Average Optimality in Markov and Semi-Markov Reward Processes
Original language description
This contribution is devoted to risk-sensitivity in long-run average optimality of Markov and semi-Markov reward processes. Since the traditional average optimality criteria cannot reflect the variability-risk features of the problem, we are interested in more sophisticated approaches where the stream of rewards generated by the Markov chain that is evaluated by an exponential utility function with a given risk sensitivity coefficient. Recall that for the risk sensitivity coefficient equal to zero (i.e. the so called risk-neutral case) we arrive at traditional optimality criteria, if the risk sensitivity coefficient is close to zero the Taylor expansion enables to evaluate variability of the generated total reward. Observe that the first moment of the total reward corresponds to expectation of total reward and the second central moment to the reward variance. In this note we present necessary and sufficient risk-sensitivity and risk-neutral optimality conditions for long run risk-sensitive average optimality criterion of unichain Markov and semi-Markov reward processes.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
50202 - Applied Economics, Econometrics
Result continuities
Project
<a href="/en/project/GA18-02739S" target="_blank" >GA18-02739S: Stochastic Optimization in Economic Processes</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 38th International Conference on Mathematical Methods in Economics
ISBN
978-80-7509-734-7
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
537-543
Publisher name
Faculty of Business Economics, Mendel University
Place of publication
Brno
Event location
Brno
Event date
Sep 9, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—