All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Risk-sensitive Average Optimality in Markov Decision Processes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00502902" target="_blank" >RIV/67985556:_____/18:00502902 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.14736/kyb-2018-6-1218" target="_blank" >http://dx.doi.org/10.14736/kyb-2018-6-1218</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14736/kyb-2018-6-1218" target="_blank" >10.14736/kyb-2018-6-1218</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Risk-sensitive Average Optimality in Markov Decision Processes

  • Original language description

    In this note attention is focused on finding policies optimizing risk-sensitive optimality criteria in Markov decision chains. To this end we assume that the total reward generated by the Markov process is evaluated by an exponential utility function with a given risk-sensitive coefficient. The ratio of the first two moments depends on the value of the risk-sensitive coefficient, if the risk-sensitive coefficient is equal to zero we speak on risk-neutral models. Observe that the first moment of the generated reward corresponds to the expectation of the total reward and the second central moment of the reward variance. For communicating Markov processes and for some specific classes of unichain processes long run risk-sensitive average reward is independent of the starting state. In this note we present necessary and sufficient condition for existence of optimal policies independent of the starting state in unichain models and characterize the class of average risk-sensitive optimal policies.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GA18-02739S" target="_blank" >GA18-02739S: Stochastic Optimization in Economic Processes</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Kybernetika

  • ISSN

    0023-5954

  • e-ISSN

  • Volume of the periodical

    54

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    CS1 -

  • Number of pages

    13

  • Pages from-to

    1218-1230

  • UT code for WoS article

    000457070200009

  • EID of the result in the Scopus database