All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Dynamic Bayesian knowledge transfer between a pair of Kalman filters

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00499667" target="_blank" >RIV/67985556:_____/18:00499667 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/MLSP.2018.8517020" target="_blank" >http://dx.doi.org/10.1109/MLSP.2018.8517020</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/MLSP.2018.8517020" target="_blank" >10.1109/MLSP.2018.8517020</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Dynamic Bayesian knowledge transfer between a pair of Kalman filters

  • Original language description

    Transfer learning is a framework that includes---among other topics---the design of knowledge transfer mechanisms between Bayesian filters. Transfer learning strategies in this context typically rely on a complete stochastic dependence structure being specified between the participating learning procedures (filters). This paper proposes a method that does not require such a restrictive assumption. The solution in this incomplete modelling case is based on the fully probabilistic design of an unknown probability distribution which conditions on knowledge in the form of an externally supplied distribution. We are specifically interested in the situation where the external distribution accumulates knowledge dynamically via Kalman filtering. Simulations illustrate that the proposed algorithm outperforms alternative methods for transferring this dynamic knowledge from the external Kalman filter.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GA18-15970S" target="_blank" >GA18-15970S: Optimal Distributional Design for External Stochastic Knowledge Processing</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    PROCEEDINGS OF MLSP 2018 : IEEE 28th International Workshop on Machine Learning for Signal Processing

  • ISBN

    978-1-5386-5478-1

  • ISSN

    1551-2541

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Aalborg

  • Event date

    Sep 17, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000450651000042