All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hierarchical Bayesian Transfer Learning Between a Pair of Kalman Filters

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00549007" target="_blank" >RIV/67985556:_____/21:00549007 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/ISSC52156.2021.9467863" target="_blank" >http://dx.doi.org/10.1109/ISSC52156.2021.9467863</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ISSC52156.2021.9467863" target="_blank" >10.1109/ISSC52156.2021.9467863</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hierarchical Bayesian Transfer Learning Between a Pair of Kalman Filters

  • Original language description

    Transfer learning strategies are typically designed in a deterministic manner, without processing uncertainty in the knowledge transfer mechanism. They also require the dependence between the participating learning procedures-Bayesian filters in this work-to be explicitly modelled. This letter develops an approach which relaxes both of these restrictive assumptions. We frame the proposed Bayesian transfer learning technique as fully probabilistic design of an unknown hierarchical probability distribution conditioned on knowledge in the form of an external probability distribution. This yields a randomized design around a base density for transfer learning which has been reported in previous work by the authors. In the Kalman filtering context, this hierarchical relaxation-which induces a knowledge-driven mixture state predictor-significantly improves tracking performance when compared to conventional transfer learning methods.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-15970S" target="_blank" >GA18-15970S: Optimal Distributional Design for External Stochastic Knowledge Processing</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 32nd Irish Signals and Systems Conference (ISSC) 2021

  • ISBN

    978-1-6654-3429-4

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    9467863

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Athlone

  • Event date

    Jun 10, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article