All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Robust Bayesian transfer learning between Kalman filters

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00510186" target="_blank" >RIV/67985556:_____/19:00510186 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/MLSP.2019.8918783" target="_blank" >http://dx.doi.org/10.1109/MLSP.2019.8918783</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/MLSP.2019.8918783" target="_blank" >10.1109/MLSP.2019.8918783</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Robust Bayesian transfer learning between Kalman filters

  • Original language description

    Bayesian transfer learning typically requires complete specification of the stochastic dependence between source and target domains. Fully probabilistic design-based Bayesian transfer learning---which transfers source knowledge in the form of a probability distribution-obviates these restrictive assumptions. However, this approach has suffered from negative transfer when the source knowledge is imprecise. We propose a scale variable relaxation to transfer all source moments successfully, achieving robust transfer (i.e. rejection of imprecise source knowledge). A recursive algorithm is recovered via local variational Bayes approximation. The solution offers positive transfer of precise source knowledge, while rejecting it when imprecise. Experiments show that the technique is competitive with or equivalent to alternative methods.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA18-15970S" target="_blank" >GA18-15970S: Optimal Distributional Design for External Stochastic Knowledge Processing</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    PROCEEDINGS OF MLSP 2019 : IEEE 29th International Workshop on Machine Learning for Signal Processing

  • ISBN

    978-1-7281-0824-7

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    19

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Pittsburgh

  • Event date

    Oct 13, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article