All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Regression Quantiles under Heteroscedasticity and Multicollinearity: Analysis of Travel and Tourism Competitiveness

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00505226" target="_blank" >RIV/67985556:_____/19:00505226 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985807:_____/19:00501434

  • Result on the web

    <a href="https://www.sav.sk/index.php?lang=sk&doc=journal-list&part=article_response_page&journal_article_no=16099" target="_blank" >https://www.sav.sk/index.php?lang=sk&doc=journal-list&part=article_response_page&journal_article_no=16099</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Regression Quantiles under Heteroscedasticity and Multicollinearity: Analysis of Travel and Tourism Competitiveness

  • Original language description

    In the linear regression, heteroscedasticity and multicollinearity can be characterized as intertwined problems, which often simultaneously appear in econometric models. The aim of this paper is to discuss various approaches to regression modelling for heteroscedastic multicollinear data. A real economic dataset from the World Economic Forum serves as an illustration of various individual methods and the paper provides a practical motivation for quantile regression and particularly for regularized regression quantiles. In the dataset, tourist service infrastructure across 141 countries is modeled as a response of 12 characteristics of the Travel and Tourism Competitiveness Index (TTCI). Regression quantiles and their lasso estimates turn out to be more suitable for the dataset compared to more traditional econometric tools.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GA17-07384S" target="_blank" >GA17-07384S: Nonparametric (statistical) methods in modern econometrics</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Ekonomický časopis

  • ISSN

    0013-3035

  • e-ISSN

  • Volume of the periodical

    67

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    SK - SLOVAKIA

  • Number of pages

    17

  • Pages from-to

    69-85

  • UT code for WoS article

    000457791100005

  • EID of the result in the Scopus database

    2-s2.0-85068216962