Regression Quantiles under Heteroscedasticity and Multicollinearity: Analysis of Travel and Tourism Competitiveness
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00505226" target="_blank" >RIV/67985556:_____/19:00505226 - isvavai.cz</a>
Alternative codes found
RIV/67985807:_____/19:00501434
Result on the web
<a href="https://www.sav.sk/index.php?lang=sk&doc=journal-list&part=article_response_page&journal_article_no=16099" target="_blank" >https://www.sav.sk/index.php?lang=sk&doc=journal-list&part=article_response_page&journal_article_no=16099</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Regression Quantiles under Heteroscedasticity and Multicollinearity: Analysis of Travel and Tourism Competitiveness
Original language description
In the linear regression, heteroscedasticity and multicollinearity can be characterized as intertwined problems, which often simultaneously appear in econometric models. The aim of this paper is to discuss various approaches to regression modelling for heteroscedastic multicollinear data. A real economic dataset from the World Economic Forum serves as an illustration of various individual methods and the paper provides a practical motivation for quantile regression and particularly for regularized regression quantiles. In the dataset, tourist service infrastructure across 141 countries is modeled as a response of 12 characteristics of the Travel and Tourism Competitiveness Index (TTCI). Regression quantiles and their lasso estimates turn out to be more suitable for the dataset compared to more traditional econometric tools.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GA17-07384S" target="_blank" >GA17-07384S: Nonparametric (statistical) methods in modern econometrics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Ekonomický časopis
ISSN
0013-3035
e-ISSN
—
Volume of the periodical
67
Issue of the periodical within the volume
1
Country of publishing house
SK - SLOVAKIA
Number of pages
17
Pages from-to
69-85
UT code for WoS article
000457791100005
EID of the result in the Scopus database
2-s2.0-85068216962