SSB representation of preferences: Weakening of convexity assumptions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00505534" target="_blank" >RIV/67985556:_____/19:00505534 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0304406819300473" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0304406819300473</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmateco.2019.04.006" target="_blank" >10.1016/j.jmateco.2019.04.006</a>
Alternative languages
Result language
angličtina
Original language name
SSB representation of preferences: Weakening of convexity assumptions
Original language description
A continuous skew-symmetric bilinear (SSB) representation of preferences has recently been proposed in a topological vector space, assuming a weaker notion of convexity of preferences than in the classical (algebraic) case. Equipping a linear vector space with the so-called inductive linear topology, we derive the algebraic SSB representation on such topological basis, thus weakening the convexity assumption. Such a unifying approach to SSB representation leads, moreover, to a stronger existence result for a maximal element and opens a way for a non-probabilistic interpretation of the algebraic theory. Note finally that our method of using powerful topological techniques to derive purely algebraic result may be of general interest.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA17-08182S" target="_blank" >GA17-08182S: Mathematical Modelling of Intransitive Preferences</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Economics
ISSN
0304-4068
e-ISSN
—
Volume of the periodical
83
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
5
Pages from-to
84-88
UT code for WoS article
000473249600009
EID of the result in the Scopus database
2-s2.0-85065471395