Theory of SSB Representation of Preferences Revised
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00510321" target="_blank" >RIV/67985556:_____/19:00510321 - isvavai.cz</a>
Alternative codes found
RIV/61384399:31160/19:00054889
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Theory of SSB Representation of Preferences Revised
Original language description
A continuous skew-symmetric bilinear (SSB) representation of preferences has recently been proposed in a topological vector space, assuming a weaker notion of convexity of preferences than in the classical (algebraic) case. Equipping a linear vector space with the so-called inductive linear topology, we derive the algebraic SSB representation on a topological basis, thus weakeningnthe convexity assumption. Such a unifying approach to SSB representation permits also to fully discuss the relationship of topological and algebraic axioms of continuity, and leads to a stronger existence result for a maximal element. By applying this theory to probability measures we show the existence of a maximal preferred measure for an infinite set of pure outcomes, thus generalizing all available existence theorems in this context.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-08182S" target="_blank" >GA17-08182S: Mathematical Modelling of Intransitive Preferences</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 22nd Czech-Japan Seminar on Data Analysis and Decision Making (CJS’19)
ISBN
978-80-7378-400-3
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
145-149
Publisher name
MatfyzPress
Place of publication
Praha
Event location
Nový Světlov
Event date
Sep 25, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—