Equilibrium interfaces of biased voter models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00506795" target="_blank" >RIV/67985556:_____/19:00506795 - isvavai.cz</a>
Result on the web
<a href="https://projecteuclid.org/euclid.aoap/1563869050" target="_blank" >https://projecteuclid.org/euclid.aoap/1563869050</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1214/19-AAP1461" target="_blank" >10.1214/19-AAP1461</a>
Alternative languages
Result language
angličtina
Original language name
Equilibrium interfaces of biased voter models
Original language description
A one-dimensional interacting particle system is said to exhibit interface tightness if starting in an initial condition describing the interface between two constant configurations of different types, the process modulo translations is positive recurrent. In a biological setting, this describes two populations that do not mix, and it is believed to be a common phenomenon in one-dimensional particle systems. Interface tightness has been proved for voter models satisfying a finite second moment condition on the rates. We extend this to biased voter models. Furthermore, we show that the distribution of the equilibrium interface for the biased voter model converges to that of the voter model when the bias parameter tends to zero. A key ingredient is an identity for the expected number of boundaries in the equilibrium voter model interface, which is of independent interest.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-15238S" target="_blank" >GA16-15238S: Collective behavior of large stochastic systems</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annals of Applied Probability
ISSN
1050-5164
e-ISSN
—
Volume of the periodical
29
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
38
Pages from-to
2556-2593
UT code for WoS article
000482655300017
EID of the result in the Scopus database
2-s2.0-85070633884