All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multiple Instance Learning with Bag-Level Randomized Trees

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00507111" target="_blank" >RIV/67985556:_____/19:00507111 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-10925-7_16" target="_blank" >http://dx.doi.org/10.1007/978-3-030-10925-7_16</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-10925-7_16" target="_blank" >10.1007/978-3-030-10925-7_16</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multiple Instance Learning with Bag-Level Randomized Trees

  • Original language description

    Knowledge discovery in databases with a flexible structure poses a great challenge to machine learning community. Multiple Instance Learning (MIL) aims at learning from samples (called bags) represented by multiple feature vectors (called instances) as opposed to single feature vectors characteristic for the traditional data representation. This relaxation turns out to be useful in formulating many machine learning problems including classification of molecules, cancer detection from tissue images or identification of malicious network communications. However, despite the recent progress in this area, the current set of MIL tools still seems to be very application specific and/or burdened with many tuning parameters or processing steps. In this paper, we propose a simple, yet effective tree-based algorithm for solving MIL classification problems. Empirical evaluation against 28 classifiers on 29 publicly available benchmark datasets shows a high level performance of the proposed solution even with its default parameter settings.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20204 - Robotics and automatic control

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Machine Learning and Knowledge Discovery in Databases

  • ISBN

    978-3-030-10925-7

  • ISSN

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    259-272

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham

  • Event location

    Dublin

  • Event date

    Sep 10, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article