Using Neural Network Formalism to Solve Multiple-Instance Problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315379" target="_blank" >RIV/68407700:21230/17:00315379 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-319-59072-1_17" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-59072-1_17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-59072-1_17" target="_blank" >10.1007/978-3-319-59072-1_17</a>
Alternative languages
Result language
angličtina
Original language name
Using Neural Network Formalism to Solve Multiple-Instance Problems
Original language description
a fixed length, whereas describing them by means of a set of vectors is more natural. Therefore, Multiple instance learning (MIL) techniques have been constantly gaining in importance throughout the last years. MIL formalism assumes that each object (sample) is represented by a set (bag) of feature vectors (instances) of fixed length, where knowledge about objects (e.g., class label) is available on bag level but not necessarily on instance level. Many standard tools including supervised classifiers have been already adapted to MIL setting since the problem got formalized in the late nineties. In this work we propose a neural network (NN) based formalism that intuitively bridges the gap between MIL problem definition and the vast existing knowledge-base of standard models and classifiers. We show that the proposed NN formalism is effectively optimizable by a back-propagation algorithm and can reveal unknown patterns inside bags. Comparison to 14 types of classifiers from the prior art on a set of 20 publicly available benchmark datasets confirms the advantages and accuracy of the proposed solution.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in Neural Networks - ISNN 2017
ISBN
978-3-319-59071-4
ISSN
0302-9743
e-ISSN
—
Number of pages
8
Pages from-to
135-142
Publisher name
Springer
Place of publication
Wien
Event location
Hokkaido
Event date
Jun 21, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—