All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bayesian transfer learning between Gaussian process regression tasks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00517961" target="_blank" >RIV/67985556:_____/19:00517961 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/ISSPIT47144.2019.9001885" target="_blank" >http://dx.doi.org/10.1109/ISSPIT47144.2019.9001885</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ISSPIT47144.2019.9001885" target="_blank" >10.1109/ISSPIT47144.2019.9001885</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bayesian transfer learning between Gaussian process regression tasks

  • Original language description

    Bayesian knowledge transfer in supervised learning scenarios often relies on a complete specification and optimization of the stochastic dependence between source and target tasks. This is a critical requirement of completely modelled settings, which can often be difficult to justify. We propose a strategy to overcome this. The methodology relies on fully probabilistic design to develop a target algorithm which accepts source knowledge in the form of a probability distribution. We present this incompletely modelled setting in the supervised learning context where the source and target tasks are to perform Gaussian process regression. Experimental evaluation demonstrates that the transfer of the source distribution substantially improves prediction performance of the target learner when recovering a distorted nonparametric function realization from noisy data.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA18-15970S" target="_blank" >GA18-15970S: Optimal Distributional Design for External Stochastic Knowledge Processing</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the IEEE International Symposium on Signal Processing and Information Technology 2019 (ISSPIT 2019)

  • ISBN

    978-1-7281-5341-4

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Ajman

  • Event date

    Dec 9, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000568621300052