Bayesian transfer learning between Gaussian process regression tasks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00517961" target="_blank" >RIV/67985556:_____/19:00517961 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/ISSPIT47144.2019.9001885" target="_blank" >http://dx.doi.org/10.1109/ISSPIT47144.2019.9001885</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ISSPIT47144.2019.9001885" target="_blank" >10.1109/ISSPIT47144.2019.9001885</a>
Alternative languages
Result language
angličtina
Original language name
Bayesian transfer learning between Gaussian process regression tasks
Original language description
Bayesian knowledge transfer in supervised learning scenarios often relies on a complete specification and optimization of the stochastic dependence between source and target tasks. This is a critical requirement of completely modelled settings, which can often be difficult to justify. We propose a strategy to overcome this. The methodology relies on fully probabilistic design to develop a target algorithm which accepts source knowledge in the form of a probability distribution. We present this incompletely modelled setting in the supervised learning context where the source and target tasks are to perform Gaussian process regression. Experimental evaluation demonstrates that the transfer of the source distribution substantially improves prediction performance of the target learner when recovering a distorted nonparametric function realization from noisy data.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA18-15970S" target="_blank" >GA18-15970S: Optimal Distributional Design for External Stochastic Knowledge Processing</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the IEEE International Symposium on Signal Processing and Information Technology 2019 (ISSPIT 2019)
ISBN
978-1-7281-5341-4
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
—
Publisher name
IEEE
Place of publication
Piscataway
Event location
Ajman
Event date
Dec 9, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000568621300052