Handling Gaussian Blur without Deconvolution
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00522528" target="_blank" >RIV/67985556:_____/20:00522528 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0031320320300698" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0031320320300698</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.patcog.2020.107264" target="_blank" >10.1016/j.patcog.2020.107264</a>
Alternative languages
Result language
angličtina
Original language name
Handling Gaussian Blur without Deconvolution
Original language description
The paper presents a new theory of invariants to Gaussian blur. Unlike earlier methods, the blur kernel may be arbitrary oriented, scaled and elongated. Such blurring is a semi-group action in the image space, where the orbits are classes of blur-equivalent images. We propose a non-linear projection operator which extracts blur-insensitive component of the image. The invariants are then formally defined as moments of this component but can be computed directly from the blurred image without an explicit construction of the projections. Image description by the new invariants does not require any prior knowledge of the blur kernel parameters and does not include any deconvolution. The invariance property could be extended also to linear transformation of the image coordinates and combined affine-blur invariants can be constructed. Experimental comparison to three other blur-invariant methods is given. Potential applications of the new invariants are in blur/position invariant image recognition and in robust template matching.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA18-07247S" target="_blank" >GA18-07247S: Methods and Algorithms for Vector and Tensor Field Image Analysis</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Pattern Recognition
ISSN
0031-3203
e-ISSN
—
Volume of the periodical
103
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
11
Pages from-to
107264
UT code for WoS article
000530845000012
EID of the result in the Scopus database
2-s2.0-85079864481