All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Blur Invariants for Image Recognition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00573978" target="_blank" >RIV/67985556:_____/23:00573978 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s11263-023-01798-7" target="_blank" >https://link.springer.com/article/10.1007/s11263-023-01798-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11263-023-01798-7" target="_blank" >10.1007/s11263-023-01798-7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Blur Invariants for Image Recognition

  • Original language description

    Blur is an image degradation that makes object recognition challenging. Restoration approaches solve this problem via image deblurring, deep learning methods rely on the augmentation of training sets. Invariants with respect to blur offer an alternative way of describing and recognising blurred images without any deblurring and data augmentation. In this paper, we present an original theory of blur invariants. Unlike all previous attempts, the new theory requires no prior knowledge of the blur type. The invariants are constructed in the Fourier domain by means of orthogonal projection operators and moment expansion is used for efficient and stable computation. Applying a general substitution rule, combined invariants to blur and spatial transformations are easy to construct and use. Experimental comparison to Convolutional Neural Networks shows the advantages of the proposed theory.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20204 - Robotics and automatic control

Result continuities

  • Project

    <a href="/en/project/GA21-03921S" target="_blank" >GA21-03921S: Inverse problems in image processing</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Computer Vision

  • ISSN

    0920-5691

  • e-ISSN

    1573-1405

  • Volume of the periodical

    131

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    18

  • Pages from-to

    2298-2315

  • UT code for WoS article

    001000360800003

  • EID of the result in the Scopus database

    2-s2.0-85160864192