Stable Low-Rank Tensor Decomposition for Compression of Convolutional Neural Network
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00534541" target="_blank" >RIV/67985556:_____/20:00534541 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-58526-6_31" target="_blank" >http://dx.doi.org/10.1007/978-3-030-58526-6_31</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-58526-6_31" target="_blank" >10.1007/978-3-030-58526-6_31</a>
Alternative languages
Result language
angličtina
Original language name
Stable Low-Rank Tensor Decomposition for Compression of Convolutional Neural Network
Original language description
Most state-of-the-art deep neural networks are overparameterized and exhibit a high computational cost. A straightforward approach to this problem is to replace convolutional kernels with its low-rank tensor approximations, whereas the Canonical Polyadic tensor Decomposition is one of the most suited models. However, fitting the convolutional tensors by numerical optimization algorithms often encounters diverging components, i.e.,extremely large rank-one tensors but canceling each other. Such degeneracy often causes the non-interpretable result and numerical instability for the neural network ne-tuning. This paper is the first study on degeneracy in the tensor decomposition of convolutional kernels. We present a novel method, which can stabilize the low-rank approximation of convolutional kernels and ensure efficient compression while preserving the high quality performance of the neural networks. We evaluate our approach on popular CNN architectures for image classification and show that our method results in much lower accuracy degradation and provides consistent performance.n
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20201 - Electrical and electronic engineering
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
ECCV 2020
ISBN
978-3-030-58525-9
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
18
Pages from-to
522-539
Publisher name
Springer Nature Switzerland AG 2020
Place of publication
Cham
Event location
Glasgow
Event date
Aug 23, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—