All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Transfer Learning of Mixture Texture Models

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00535433" target="_blank" >RIV/67985556:_____/20:00535433 - isvavai.cz</a>

  • Alternative codes found

    RIV/61384399:31160/20:00056427

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-63007-2_65" target="_blank" >http://dx.doi.org/10.1007/978-3-030-63007-2_65</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-63007-2_65" target="_blank" >10.1007/978-3-030-63007-2_65</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Transfer Learning of Mixture Texture Models

  • Original language description

    A transfer learning approach for multidimensional parametric mixture random field-based textural representation is introduced. The proposed transfer learning approach allows alleviating the multidimensional mixture models requirement for sufficiently large, but not always available, learning data sets. These compound random field models consist of an underlying structure model that controls transitions between several sub-models, each of them has different characteristics. The structure model proposed is a two-dimensional probabilistic mixture model, either of the Bernoulli or Gaussian mixture type. Local textures are modeled using the fully multispectral three-dimensional Gaussian mixture sub-models. Both presented compound random field models allow the reproduction of, compresses, edits, and enlarges a given measured color, multispectral, or bidirectional texture function (BTF) texture so that ideally, both measured and synthetic textures are visually indiscernible.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GA19-12340S" target="_blank" >GA19-12340S: Surface material recognition under variable optical observation conditions</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computational Collective Intelligence

  • ISBN

    978-3-030-63006-5

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    13

  • Pages from-to

    825-837

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    Cham

  • Event location

    Da Nang

  • Event date

    Nov 30, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article