Transfer Learning of Mixture Texture Models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00535433" target="_blank" >RIV/67985556:_____/20:00535433 - isvavai.cz</a>
Alternative codes found
RIV/61384399:31160/20:00056427
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-63007-2_65" target="_blank" >http://dx.doi.org/10.1007/978-3-030-63007-2_65</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-63007-2_65" target="_blank" >10.1007/978-3-030-63007-2_65</a>
Alternative languages
Result language
angličtina
Original language name
Transfer Learning of Mixture Texture Models
Original language description
A transfer learning approach for multidimensional parametric mixture random field-based textural representation is introduced. The proposed transfer learning approach allows alleviating the multidimensional mixture models requirement for sufficiently large, but not always available, learning data sets. These compound random field models consist of an underlying structure model that controls transitions between several sub-models, each of them has different characteristics. The structure model proposed is a two-dimensional probabilistic mixture model, either of the Bernoulli or Gaussian mixture type. Local textures are modeled using the fully multispectral three-dimensional Gaussian mixture sub-models. Both presented compound random field models allow the reproduction of, compresses, edits, and enlarges a given measured color, multispectral, or bidirectional texture function (BTF) texture so that ideally, both measured and synthetic textures are visually indiscernible.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
<a href="/en/project/GA19-12340S" target="_blank" >GA19-12340S: Surface material recognition under variable optical observation conditions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Computational Collective Intelligence
ISBN
978-3-030-63006-5
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
13
Pages from-to
825-837
Publisher name
Springer Nature Switzerland AG
Place of publication
Cham
Event location
Da Nang
Event date
Nov 30, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—