Trust Estimation in Forecasting-Based Knowledge Fusion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00549011" target="_blank" >RIV/67985556:_____/21:00549011 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Trust Estimation in Forecasting-Based Knowledge Fusion
Original language description
Inference and decision making (DM) are ultimate goals of the artificialintelligence use. Complexity of DM tasks is the main barrier of their efficient solutions. Complex tasks are solved by dividing them among cooperating agents. This requires a knowledge fusion at a solution stage. It always has to cope with uncertainty. The used Bayesianism quantifies the uncertain knowledge by a probability density (pd) of modelled variables. The knowledge accumulation evolves the posterior pd of a parameter in the parametric model of observations. Bayes’rule updates the posterior pd. It provides a lossless compression of the knowledge in the observed data. An extended Bayes’ rule enables the use of knowledge coded in a forecaster of the modelled observations supplied by an agent’sneighbour. This rule exploits a weight expressing the trust into the forecaster. The paper offers yet-missing, algorithmic, data-based choice of this weight. It applies Bayesian estimation while assuming an invariant trust weight. Simulated examples illustrate behaviour of the resulting algorithm. They inspect its sensitivity to violation of the assumed credibility invariance. This prepares solutions coping with volatile knowledge sources.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LTC18075" target="_blank" >LTC18075: Distributed rational decision making: cooperation aspects</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů