All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximate Bayesian recursive estimation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F14%3A00425539" target="_blank" >RIV/67985556:_____/14:00425539 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.ins.2014.01.048" target="_blank" >http://dx.doi.org/10.1016/j.ins.2014.01.048</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ins.2014.01.048" target="_blank" >10.1016/j.ins.2014.01.048</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximate Bayesian recursive estimation

  • Original language description

    Bayesian learning provides a firm theoretical basis of the design and exploitation of algorithms in data-streams processing (preprocessing, change detection, hypothesis testing, clustering, etc.). Primarily, it relies on a recursive parameter estimationof a firmly bounded complexity. As a rule, it has to approximate the exact posterior probability density (pd), which comprises unreduced information about the estimated parameter. In the recursive treatment of the data stream, the latest approximate pd is usually updated using the treated parametric model and the newest data and then approximated. The fact that approximation errors may accumulate over time course is mostly neglected in the estimator design and, at most, checked ex post. The paper inspects the estimator design with respect to the error accumulation and concludes that a sort of forgetting (pd flattening) is an indispensable part of a reliable approximate recursive estimation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BB - Applied statistics, operational research

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-13502S" target="_blank" >GA13-13502S: Fully Probabilistic Design of Dynamic Decision Strategies for Imperfect Participants in Market Scenarios</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Information Sciences

  • ISSN

    0020-0255

  • e-ISSN

  • Volume of the periodical

    285

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    100-111

  • UT code for WoS article

    000342540700007

  • EID of the result in the Scopus database