Sticky polymatroids on at most five elements
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00551315" target="_blank" >RIV/67985556:_____/21:00551315 - isvavai.cz</a>
Result on the web
<a href="https://akjournals.com/view/journals/012/58/1/article-p136.xml" target="_blank" >https://akjournals.com/view/journals/012/58/1/article-p136.xml</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1556/012.2021.58.1.1489" target="_blank" >10.1556/012.2021.58.1.1489</a>
Alternative languages
Result language
angličtina
Original language name
Sticky polymatroids on at most five elements
Original language description
The sticky polymatroid conjecture states that any two extensions of the polymatroid have an amalgam if and only if the polymatroid has no non-modular pairs of flats. We show that the conjecture holds for polymatroids on five or less elements.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-04579S" target="_blank" >GA19-04579S: Conditonal independence structures: methods of polyhedral geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Studia Scientiarum Mathematicarum Hungarica
ISSN
0081-6906
e-ISSN
1588-2896
Volume of the periodical
58
Issue of the periodical within the volume
1
Country of publishing house
HU - HUNGARY
Number of pages
11
Pages from-to
136-146
UT code for WoS article
000641023800008
EID of the result in the Scopus database
2-s2.0-85104824454