All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Sticky polymatroids on at most five elements

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00551315" target="_blank" >RIV/67985556:_____/21:00551315 - isvavai.cz</a>

  • Result on the web

    <a href="https://akjournals.com/view/journals/012/58/1/article-p136.xml" target="_blank" >https://akjournals.com/view/journals/012/58/1/article-p136.xml</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1556/012.2021.58.1.1489" target="_blank" >10.1556/012.2021.58.1.1489</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Sticky polymatroids on at most five elements

  • Original language description

    The sticky polymatroid conjecture states that any two extensions of the polymatroid have an amalgam if and only if the polymatroid has no non-modular pairs of flats. We show that the conjecture holds for polymatroids on five or less elements.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-04579S" target="_blank" >GA19-04579S: Conditonal independence structures: methods of polyhedral geometry</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Studia Scientiarum Mathematicarum Hungarica

  • ISSN

    0081-6906

  • e-ISSN

    1588-2896

  • Volume of the periodical

    58

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    HU - HUNGARY

  • Number of pages

    11

  • Pages from-to

    136-146

  • UT code for WoS article

    000641023800008

  • EID of the result in the Scopus database

    2-s2.0-85104824454