Cyclic flats of a polymatroid
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00533846" target="_blank" >RIV/67985556:_____/20:00533846 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s00026-020-00506-3" target="_blank" >https://link.springer.com/article/10.1007/s00026-020-00506-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00026-020-00506-3" target="_blank" >10.1007/s00026-020-00506-3</a>
Alternative languages
Result language
angličtina
Original language name
Cyclic flats of a polymatroid
Original language description
Polymatroids can be considered as “fractional matroids” where the rank function is not required to be integer valued. Many, but not every notion in matroid terminology translates naturally to polymatroids. Defining cyclic flats of a polymatroid carefully, the characterization by Bonin and de Mier of the ranked lattice of cyclic flats carries over to polymatroids. The main tool, which might be of independent interest, is a convolution-like method which creates a polymatroid from a ranked lattice and a discrete measure. Examples show the ease of using convolution technique.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-04579S" target="_blank" >GA19-04579S: Conditonal independence structures: methods of polyhedral geometry</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annals of Combinatorics
ISSN
0218-0006
e-ISSN
—
Volume of the periodical
24
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
12
Pages from-to
637-648
UT code for WoS article
000559295300001
EID of the result in the Scopus database
2-s2.0-85089355783