All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Stabilization of periodic sweeping processes and asymptotic average velocity for soft locomotors with dry friction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00552385" target="_blank" >RIV/67985556:_____/22:00552385 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.aimsciences.org/article/doi/10.3934/dcds.2021135" target="_blank" >https://www.aimsciences.org/article/doi/10.3934/dcds.2021135</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3934/dcds.2021135" target="_blank" >10.3934/dcds.2021135</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Stabilization of periodic sweeping processes and asymptotic average velocity for soft locomotors with dry friction

  • Original language description

    We study the asymptotic stability of periodic solutions for sweeping processes defined by a polyhedron with translationally moving faces. Previous results are improved by obtaining a stronger W1,2 convergence. Then we present an application to a model of crawling locomotion. Our stronger convergence allows us to prove the stabilization of the system to a running-periodic (or derivo-periodic, or relative-periodic) solution and the well-posedness of an average asymptotic velocity depending only on the gait adopted by the crawler. Finally, we discuss some examples of finite-time versus asymptotic-only convergence.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GF19-29646L" target="_blank" >GF19-29646L: Large Strain Challenges in Materials Science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Discrete and Continuous Dynamical Systems

  • ISSN

    1078-0947

  • e-ISSN

    1553-5231

  • Volume of the periodical

    42

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    21

  • Pages from-to

    737-757

  • UT code for WoS article

    000697764200001

  • EID of the result in the Scopus database

    2-s2.0-85119082722