All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Remarks on definitions of periodic points for nonautonomous dynamical system

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F19%3AA0000058" target="_blank" >RIV/47813059:19610/19:A0000058 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.tandfonline.com/doi/abs/10.1080/10236198.2019.1641496?journalCode=gdea20" target="_blank" >https://www.tandfonline.com/doi/abs/10.1080/10236198.2019.1641496?journalCode=gdea20</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/10236198.2019.1641496" target="_blank" >10.1080/10236198.2019.1641496</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Remarks on definitions of periodic points for nonautonomous dynamical system

  • Original language description

    Let (X, f(1,infinity)) be a nonautonomous dynamical system. In this paper, we summarize known definitions of periodic points for general nonautonomous dynamical systems and propose a new definition of asymptotic periodicity. This definition is not only very natural but also resistant to changes of the beginning of the sequence generating the nonautonomous system. We show the relations among these definitions and discuss their properties. We prove that for pointwise convergent nonautonomous systems topological transitivity together with a dense set of asymptotically periodic points imply sensitivity. We also show that even for uniformly convergent systems, the nonautonomous analogue of Sharkovsky's theorem is not valid for most definitions of periodic points.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Difference Equations and Applications

  • ISSN

    1023-6198

  • e-ISSN

    1563-5120

  • Volume of the periodical

    25

  • Issue of the periodical within the volume

    9-10

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    1372-1381

  • UT code for WoS article

    000476334700001

  • EID of the result in the Scopus database

    2-s2.0-85075704610