Systematic generation of moment invariant bases for 2D and 3D tensor fields
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00553375" target="_blank" >RIV/67985556:_____/22:00553375 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0031320321004933" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0031320321004933</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.patcog.2021.108313" target="_blank" >10.1016/j.patcog.2021.108313</a>
Alternative languages
Result language
angličtina
Original language name
Systematic generation of moment invariant bases for 2D and 3D tensor fields
Original language description
Moment invariants have been successfully applied to pattern detection tasks in 2D and 3D scalar, vector, and matrix valued data. However so far no flexible basis of invariants exists, i.e., no set that is optimal in the sense that it is complete and independent for every input pattern. In this paper, we prove that a basis of moment invariants can be generated that consists of tensor contractions of not more than two different moment tensors each under the conjecture of the set of all possible tensor contractions to be complete. This result allows us to derive the first generator algorithm that produces flexible bases of moment invariants with respect to orthogonal transformations by selecting a single non-zero moment to pair with all others in these two-factor products. Since at least one non-zero moment can be found in every non-zero pattern, this approach always generates a complete set of descriptors.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA18-07247S" target="_blank" >GA18-07247S: Methods and Algorithms for Vector and Tensor Field Image Analysis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Pattern Recognition
ISSN
0031-3203
e-ISSN
1873-5142
Volume of the periodical
123
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
108313
UT code for WoS article
000711834400009
EID of the result in the Scopus database
2-s2.0-85117588635