All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Computing the Decomposable Entropy of Graphical Belief Function Models

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00558135" target="_blank" >RIV/67985556:_____/22:00558135 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Computing the Decomposable Entropy of Graphical Belief Function Models

  • Original language description

    In 2018, Jiroušek and Shenoy proposed a definition of entropy for Dempster-Shafer (D-S) belief functions called decomposable entropy. Here, we provide an algorithm for computing the decomposable entropy of directed graphical D-S belief function models. For undirected graphical belief function models, assuming that each belief function in the model is non-informative to the others, no algorithm is necessary. We compute the entropy of each belief function and add them together to get the decomposable entropy of the model. Finally, the decomposable entropy generalizes Shannon’s entropy not only for the probability of a single random variable but also for multinomial distributions expressed as directed acyclic graphical models called Bayesian networks.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-04579S" target="_blank" >GA19-04579S: Conditonal independence structures: methods of polyhedral geometry</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 12th Workshop on Uncertainty Processing

  • ISBN

    978-80-7378-460-7

  • ISSN

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    111-122

  • Publisher name

    MatfyzPress

  • Place of publication

    Prague

  • Event location

    Kutná Hora

  • Event date

    Jun 1, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article