Computing the decomposable entropy of belief-function graphical models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00573803" target="_blank" >RIV/67985556:_____/23:00573803 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0888613X23001159?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0888613X23001159?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijar.2023.108984" target="_blank" >10.1016/j.ijar.2023.108984</a>
Alternative languages
Result language
angličtina
Original language name
Computing the decomposable entropy of belief-function graphical models
Original language description
In 2018, Jiroušek and Shenoy proposed a definition of entropy for Dempster-Shafer (D-S) belief functions called decomposable entropy (d-entropy). This paper provides an algorithm for computing the d-entropy of directed graphical D-S belief function models. We illustrate the algorithm using Almond's Captain's Problem example. For belief function undirected graphical models, assuming that the set of belief functions in the model is non-informative, the belief functions are distinct. We illustrate this using Haenni-Lehmann's Communication Network problem. As the joint belief function for this model is quasi-consonant, it follows from a property of d-entropy that the d-entropy of this model is zero, and no algorithm is required. For a class of undirected graphical models, we provide an algorithm for computing the d-entropy of such models. Finally, the d-entropy coincides with Shannon's entropy for the probability mass function of a single random variable and for a large multi-dimensional probability distribution expressed as a directed acyclic graph model called a Bayesian network. We illustrate this using Lauritzen-Spiegelhalter's Chest Clinic example represented as a belief-function directed graphical model.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA21-07494S" target="_blank" >GA21-07494S: Efficiency of Carbon Reduction Policies</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Approximate Reasoning
ISSN
0888-613X
e-ISSN
1873-4731
Volume of the periodical
161
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
108984
UT code for WoS article
001058204600001
EID of the result in the Scopus database
2-s2.0-85165544597