On the Application of the SCD Semismooth* Newton Method to Variational Inequalities of the Second Kind
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00569924" target="_blank" >RIV/67985556:_____/22:00569924 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21240/22:00364981
Result on the web
<a href="https://link.springer.com/article/10.1007/s11228-022-00651-2" target="_blank" >https://link.springer.com/article/10.1007/s11228-022-00651-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11228-022-00651-2" target="_blank" >10.1007/s11228-022-00651-2</a>
Alternative languages
Result language
angličtina
Original language name
On the Application of the SCD Semismooth* Newton Method to Variational Inequalities of the Second Kind
Original language description
The paper starts with a description of SCD (subspace containing derivative) mappings and the SCD Newton method for the solution of general inclusions. This method is then applied to a class of variational inequalities of the second kind. As a result, one obtains an implementable algorithm which exhibits locally superlinear convergence. Thereafter we suggest several globally convergent hybrid algorithms in which one combines the SCD Newton method with selected splitting algorithms for the solution of monotone variational inequalities. Finally, we demonstrate the efficiency of one of these methods via a Cournot-Nash equilibrium, modeled as a variational inequality of the second kind, where one admits really large numbers of players (firms) and produced commodities.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF21-06569K" target="_blank" >GF21-06569K: Scales and shapes in continuum thermomechanics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Set-Valued and Variational Analysis
ISSN
1877-0533
e-ISSN
1877-0541
Volume of the periodical
30
Issue of the periodical within the volume
4
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
32
Pages from-to
1453-1484
UT code for WoS article
000889040500001
EID of the result in the Scopus database
2-s2.0-85142726035