New horizon in fuzzy distributions: statistical distributions in continuous domains generated by Choquet integral
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00576152" target="_blank" >RIV/67985556:_____/23:00576152 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s00500-023-08529-7" target="_blank" >https://link.springer.com/article/10.1007/s00500-023-08529-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00500-023-08529-7" target="_blank" >10.1007/s00500-023-08529-7</a>
Alternative languages
Result language
angličtina
Original language name
New horizon in fuzzy distributions: statistical distributions in continuous domains generated by Choquet integral
Original language description
In this paper, some statistical properties of the Choquet integral are discussed. As an interesting application of Choquet integral and fuzzy measures, we introduce a new class of exponential-like distributions related to monotone set functions, called Choquet exponential distributions, by combining the properties of Choquet integral with the exponential distribution. We show some famous statistical distributions such as gamma, logistic, exponential, Rayleigh and other distributions are a special class of Choquet distributions. Then, we show that this new proposed Choquet exponential distribution is better on daily gold price data analysis. Also, a real dataset of the daily number of new infected people to coronavirus in the USA in the period of 2020/02/29 to 2020/10/19 is analyzed. The method presented in this article opens a new horizon for future research.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Soft Computing
ISSN
1432-7643
e-ISSN
1433-7479
Volume of the periodical
27
Issue of the periodical within the volume
15
Country of publishing house
DE - GERMANY
Number of pages
10
Pages from-to
10447-10456
UT code for WoS article
000999732700002
EID of the result in the Scopus database
2-s2.0-85160863887