On Minimization of Nonlinear Energies Using FEM in MATLAB
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00584116" target="_blank" >RIV/67985556:_____/23:00584116 - isvavai.cz</a>
Alternative codes found
RIV/49777513:23520/23:43968559
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-031-30445-3_28" target="_blank" >http://dx.doi.org/10.1007/978-3-031-30445-3_28</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-30445-3_28" target="_blank" >10.1007/978-3-031-30445-3_28</a>
Alternative languages
Result language
angličtina
Original language name
On Minimization of Nonlinear Energies Using FEM in MATLAB
Original language description
Two minimization problems are added to the Moskovka and Valdman MATLAB package (2022): a Ginzburg-Landau (scalar) problem and a topology optimization (both scalar and vector) problem in linear elasticity. Both problems are described as nonlinear energy minimizations that contain the first gradient of the unknown field. Their energy functionals are discretized by finite elements, and the corresponding minima are searched using the trust-region method with a known Hessian sparsity or the Quasi-Newton method.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Parallel Processing and Applied Mathematics : 14th International Conference, PPAM 2022
ISBN
978-3-031-30444-6
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
12
Pages from-to
331-342
Publisher name
Springer
Place of publication
Cham
Event location
Gdansk
Event date
Sep 11, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—