By how much can Residual Minimization Accelerate the Convergence of Orthogonal Residual Methods?
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F01%3A06010076" target="_blank" >RIV/67985807:_____/01:06010076 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
By how much can Residual Minimization Accelerate the Convergence of Orthogonal Residual Methods?
Original language description
We estimate how much smaller the residuals or quasi-residuals of the minimizing methods can be compared to those of the corresponding Galerkin or Petrov-Galerkin method. By an interpretation of smoothing processes in coordinate space we deepen the understanding of some of the underlying relationships and introduce a unifying framework for minimal residual and quasi-residual smoothing.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F98%2FP108" target="_blank" >GA201/98/P108: Numerical stability analysis of iterative methods for the solution of large nonsymmetric linear systems</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2001
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Numerical Algorithms
ISSN
1017-1398
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
N/A
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
25
Pages from-to
189-213
UT code for WoS article
—
EID of the result in the Scopus database
—