A Fuzzy-logic Generalization of a Data Mining Approach.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F01%3A06010212" target="_blank" >RIV/67985807:_____/01:06010212 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A Fuzzy-logic Generalization of a Data Mining Approach.
Original language description
Generalizations of statistical hypotheses testing to vague hypotheses have so far followed the most straightforward way - to replace the set defining the null hypothesis by a fuzzy set. In this paper, a principally different approach is proposed, based on the observational-logic. Its key idea is to view statistical testing of a fuzzy hypothesis as the application of an appropriate generalized quantifier of a fuzzy predicate calculus to predicates describing the data.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA1030004" target="_blank" >IAA1030004: Mathematical foundations of inference under vagueness and uncertainty</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2001
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Neural Network World
ISSN
1210-0552
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
6
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
14
Pages from-to
595-610
UT code for WoS article
—
EID of the result in the Scopus database
—