All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The LPi and LPi/2 Propositional and Predicate Logics.

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F01%3A06020018" target="_blank" >RIV/67985807:_____/01:06020018 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    The LPi and LPi/2 Propositional and Predicate Logics.

  • Original language description

    In fuzzy logic three main logics are investigated (Godel,product and Lukasiewicz logic). There are logics LPi and LPi1/2 uniting these three logics. We show an alternative axiomatic system of these logics. In the rest of the paper is to examine properties of the predicate version of these logics. We introduce an axiomatic system and prove the corresponding completeness theorem. At the end we examine Pavelka's style extension of these logics.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2001

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Fuzzy Sets and Systems

  • ISSN

    0165-0114

  • e-ISSN

  • Volume of the periodical

    124

  • Issue of the periodical within the volume

    N/A

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    14

  • Pages from-to

    289-302

  • UT code for WoS article

  • EID of the result in the Scopus database