On Error Estimation in the Conjugate Gradient Method and why it Works in Finite Precision Computations.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F02%3A06020143" target="_blank" >RIV/67985807:_____/02:06020143 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On Error Estimation in the Conjugate Gradient Method and why it Works in Finite Precision Computations.
Original language description
This paper shows that the lower bound for the A-norm of the error based on Gauss quadrature is mathematically equivalent to the formula given by Hestenes and Stiefel. It compares existing bounds and demonstrates necessity of a proper rounding error analysis. It is given an example of the well-known bound which can fail in finite precision arithmetic. The simplest bound is proved numerically stable. Results are illustrated by numerical experiments.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F02%2F0595" target="_blank" >GA201/02/0595: Mathematical theory of iterative processes with applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2002
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ETNA
ISSN
1068-9613
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
N/A
Country of publishing house
US - UNITED STATES
Number of pages
25
Pages from-to
56-80
UT code for WoS article
—
EID of the result in the Scopus database
—