A Development of Set Theory in Fuzzy Logic.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F03%3A06030006" target="_blank" >RIV/67985807:_____/03:06030006 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A Development of Set Theory in Fuzzy Logic.
Original language description
This paper presents an axiomatic set theory FST ('Fuzzy Set Theory'), as a first-order theory within the framework of Hájek's Mathematical fuzzy logic. In the classical YFC, we use a construction similar to that of a Boolean-value universe - over an algebra of truth values of the logic we use - to show the nontriviality of FST. We give the axioms of FST. Finally we show that FST interprets ZF.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA1030004" target="_blank" >IAA1030004: Mathematical foundations of inference under vagueness and uncertainty</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2003
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Beyond Two: Theory and Applications of Multiple-Valued Logic.
ISBN
3-7908-1541-1
Number of pages of the result
13
Pages from-to
273-285
Number of pages of the book
—
Publisher name
Physica-Verlag
Place of publication
Heidelberg
UT code for WoS chapter
—