All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Development of Set Theory in Fuzzy Logic.

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F03%3A06030006" target="_blank" >RIV/67985807:_____/03:06030006 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Development of Set Theory in Fuzzy Logic.

  • Original language description

    This paper presents an axiomatic set theory FST ('Fuzzy Set Theory'), as a first-order theory within the framework of Hájek's Mathematical fuzzy logic. In the classical YFC, we use a construction similar to that of a Boolean-value universe - over an algebra of truth values of the logic we use - to show the nontriviality of FST. We give the axioms of FST. Finally we show that FST interprets ZF.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/IAA1030004" target="_blank" >IAA1030004: Mathematical foundations of inference under vagueness and uncertainty</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2003

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Beyond Two: Theory and Applications of Multiple-Valued Logic.

  • ISBN

    3-7908-1541-1

  • Number of pages of the result

    13

  • Pages from-to

    273-285

  • Number of pages of the book

  • Publisher name

    Physica-Verlag

  • Place of publication

    Heidelberg

  • UT code for WoS chapter